${ }^{119}$ Sn MÖSSBAUER QUADRUPOLE SPLITTINGS OF LOW SYMMETRY FOUR-COORDINATE TIN ORGANOMETALLIC COMPOUNDS: A SUCCESSFUL APPLICATION OF THE POINT CHARGE MODEL

G. M. BANCROFT*, K. D. BUTLER AND A. T. RAKE
Department of Chemistry, The University of Western Ontario, London (Canada)
(Received June 21st. 1971)

SUMMARY
${ }^{119} \mathrm{Sn}$ Mössbauer spectra of $\mathrm{Me}_{3} \mathrm{SnZ}, \mathrm{Me}_{2} \mathrm{ClSnZ}, \mathrm{MeCl}{ }_{2} \mathrm{SnZ}, \mathrm{Cl}_{3} \mathrm{SnZ}$ $\left[\mathrm{Z}=\mathrm{Mn}(\mathrm{CO})_{5}\right]$ and $\mathrm{Ph}_{3} \mathrm{SnY}, \mathrm{Ph}_{2} \mathrm{ClSnY}, \mathrm{PhCl}_{2} \mathrm{SnY}, \mathrm{Cl}_{3} \mathrm{SnY}\left[\mathrm{Y}=\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}-\pi\right]$ are reported. The Point Charge Model is successfully applied.

Although several papers have reported Sn Mössbauer spectra of metal-metal bonded compounds ${ }^{1-7}$, little attempt at explaining the Sn quadrupole splittings $(Q S)$ in these compounds has been made. Point charge parameters ${ }^{8}$ partial quadrupole splittings ($P Q S)^{9}$ or partial field gradients ${ }^{10}$ have been very useful for rationalizing quadrupole splittings in $\mathrm{Fe}^{\text {II }}$ low spin compounds ${ }^{9,11}$ and $\mathrm{Sn}^{\text {IV8,12,13 }}$ compounds. For example, previous results ${ }^{8.13}$ have shown that four coordinate $\mathrm{Sn}^{\mathrm{IV}}$ compounds should generally have smaller quadrupole splittings than five coordinate or transoctahedral $\mathrm{Sn}^{\mathrm{IV}}$ compounds. In this communication, we show that comparatively large quadrupole splittings (up to $2.8 \mathrm{~mm} / \mathrm{sec}$) can be obtained by lowering the molecular symmetry from a SnAB_{3} or SnAC_{3} compound by replacing ligands B or C by another ligand having markedly different bonding properties than either B et C , or by distorting the molecule greatly from tetrahedral geometry. These large four coordinate splittings are rationalized using derived self-consistent $P Q S$ values. The sign of the $Q S$ and the magnitude of η are also predicted, and bonding properties for the metal moieties $\mathrm{Mn}(\mathrm{CO})_{5}$ and $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ are discussed.

The compounds in Table 1 were prepared as reported previously ${ }^{14}$. X-ray structures of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnMn}(\mathrm{CO})_{5}{ }^{15},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnMn}(\mathrm{CO})_{5}{ }^{16},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnFe}(\mathrm{CO})_{2^{-}}$ $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{17}, \mathrm{Cl}_{3} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}{ }^{18}$ and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Cl}_{2} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}{ }^{19}$ clearly show that the Sn atom is four coordinate with no abnormally short non-bonded distances either inter or intramolecular. The distortion from tetrahedral symmetry about the Sn atom increases in the order given above. Thus in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnMn}(\mathrm{CO})_{5}$, the $\mathrm{CH}_{3}-\mathrm{Sn}-$ Mn and $\mathrm{CH}_{3}-\mathrm{Sn}-\mathrm{CH}_{3}$ bond angles vary from 106.9° to 112.2°; in contrast, the corresponding angles in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ vary from 99.1° to 129.7°.

Mössbauer spectra were taken at $80^{\circ} . \mathrm{K}$ using a BaSnO_{3} source and an Austin Science Associates spectrometer. All spectra were fitted to two lines using methods described previously ${ }^{9,20}$. Full widths at half height were $1.05 \pm 0.10 \mathrm{~mm} / \mathrm{sec}$ for all compounds. For the $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ spectrum, χ^{2} decreased by over 50 on fitting two lines instead of one.

TABLE I
${ }^{119}$ Sn mössbauer parameters at 80K

	Compound	$Q S$		η	
		Observed ${ }^{\text {a }}$	Predicted ${ }^{\text {b }}$	Predicted ${ }^{\text {b }}$	$C 5$
(I)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnMn}(\mathrm{CO})_{5}$	0.82	-	0	1.41
(II)	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CISnMn}(\mathrm{CO})_{5}$	2.60	-2.28	0.47	1.52
(III)	$\left(\mathrm{CH}_{3}\right) \mathrm{Cl}_{2} \mathrm{SnMn}(\mathrm{CO})_{5}$	2.62	+2.42	0.86	1.62
(IV)	$\mathrm{Cl}_{3} \mathrm{SnMn}(\mathrm{CO})_{5}$	1.60	+	0	1.65
(V)	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$	0.32 ± 0.10	-	0	1.39
(VI)	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{ClSnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$	2.54	-2.06	0.25	1.58
(VII)	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Cl}_{2} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$	2.84	$+2.30(+2.79)$	0.97(0.69)	1.70
(VIII)	$\mathrm{Cl}_{3} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$	1.83	+	0	1.75

${ }^{a}$ The errors in the $Q S$ are ± 0.02, except where noted. ${ }^{b}$ All predicted values (except the ones in brackets for compound (VII) were calculated assuming tetrahedral bond angles. The bracketcd values were calculated using the known bond angles for compounds (V), (VII) and (VIII). Note that the signs given are those of the $Q S$; the signs of $V_{z z}$ and q are opposite to these. ${ }^{c}$ Relative to $\mathrm{BaSnO}_{3} ; \pm 0.02 \mathrm{~mm} / \mathrm{sec}$.

The observed quadrupole splittings for the compounds $\mathrm{B}_{3-n} \mathrm{C}_{n} \mathrm{SnA}(\mathrm{B}=\mathrm{Cl}$; $\left.\mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{3} ; \mathrm{A}=\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{Mn}(\mathrm{CO})_{5}\right)$ are given in Table 1. The order of quadrupole splittings as n increases is very unexpected; the $Q S$ values for $n=1$ and $n=2$ are much larger than for $n=0$ or $n=3$. The same trend is found for other compounds with $\mathrm{B}=\mathrm{Cl}, \mathrm{Br}, \mathrm{C}_{6} \mathrm{~F}_{5}$ and $\mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{5}$ and CH_{3}. The $Q S$ value for compound (VII) appears, to be the largest four coordinate $Q S$ yet known ${ }^{13}$. The agreement with previously published values for compounds (I), (IV), (V), (VII) and (VIII) ${ }^{2-5}$ is good, except for compound (V) in which computer processing reveals a $Q S$ of about $0.3 \mathrm{~mm} /$ sec.

The trend in quadrupole splittings for $n=0$ to $n=3$ can be readily rationalized using PQS values derived from a point charge approach. The expressions for the $E F G^{\star}$ tensor components for tetrahedral bond angles are given in terms of $P Q S$ values in Table 2. The $P Q S$ value for $\mathrm{Cl}^{-}(+0.63)$ is taken from Parish and Platt ${ }^{8,12}{ }^{2} \star \star$. The $P Q S$ values for $\mathrm{Mn}(\mathrm{CO})_{5}(-0.17)$ and $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}(-0.28)$ are calculated from the $Q S$ of compounds (IV) and (VIII) respectively, assuming the sign of the $Q S$ in both compounds to be positive. The sign of the $Q S$ for $\mathrm{Cl}_{3} \mathrm{SnFe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ has recently been shown to be positive ${ }^{21}$. Then, the $P Q S$ values for $\mathrm{CH}_{3}(-0.58)$ and $\mathrm{C}_{6} \mathrm{H}_{5}$ (-0.44) are calculated from compounds (I) and (V), taking the signs of the QS to be negative to obtain reasonable $P Q S$ values for these ligands ${ }^{8,12,21}$. There will be a large uncertainty in the $P Q S$ value for $\mathrm{C}_{6} \mathrm{H}_{5}(\sim 0.05 \mathrm{~mm} / \mathrm{sec})$ because of the very small $Q S$ in compound (V). Using the above $P Q S$ values, and the expressions in Table 2 for SnABC ${ }_{2}$ compounds, the predicted $Q S$ and η values are calculated. We take $\left|V_{z z}\right\rangle \geqslant$ $\left|\mathrm{V}_{v y}\right| \geqslant\left|\mathrm{V}_{\mathrm{xx}}\right|$ after diagonalizing the $E F G$ tensor.

In agreement with the observed trend, the calculated values indicate that the dichlorides should have a larger $Q S$ than the corresponding monochloride, and that

[^0]these two compounds should have larger splittings than either of the two end members. The quantitative agreement between predicted and observed values is excellent for compounds (II) and (III), whereas for compounds (VI) and (VII), the predicted values are considerably smaller than the observed $Q S$. However, the crystal structures for compounds (V) (VII) and (VIII) ${ }^{17-19}$ all show considerable distortion from tetrahedral bond angles, and this should have a large effect on the predicted value for compound (VII). Using the structural data for compounds (V) and (VIII), we redefined $P Q S$ values for $\mathrm{C}_{6} \mathrm{H}_{5}(-0.61)$ and $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}(-0.64)$, and recalculated the $Q S$ for compound (VII). This value ($2.79 \mathrm{~mm} / \mathrm{sec}$) is now in excellent agreement with the observed value of $2.84 \mathrm{~mm} / \mathrm{sec}$. Thus, distortions from tetrahedral bond angles can markedly affect both calculated $P Q S$ values and predicted $Q S$ values. Even the signs of some of the contributions to the $E F G$ components changed from the tetrahedral calculation to the final calculation on compound (VII).

TABLE 2
COMPONENTS OF THE EFG TENSOR FOR FOUR CO-ORDINATE "TETRAHEDRAL" SN COMPOUNDS"
[L] are partial field gradients.

Components of EFG tensor	SnABCD	SnABC_{2}	$\operatorname{SnA} \mathrm{C}_{2}{ }^{\text {b }}$	$\mathrm{SnAC}_{3}{ }^{\text {b }}$
$V_{x x}$	$-[\mathrm{A}]+\frac{5}{5}[\mathrm{~B}]-\frac{1}{3}([\mathrm{C}]+[\mathrm{D}])$	$-[\mathrm{A}]+\frac{5}{3}[\mathrm{~B}]-\frac{2}{3}[\mathrm{C}]$	$\frac{2}{3}[\mathrm{~A}]-\frac{2}{3}[\mathrm{C}]$	$-[\mathrm{A}]+[\mathrm{C}]$
$V_{y y}$	$-[\mathrm{A}]-[\mathrm{B}]+[\mathrm{C}]+[\mathrm{D}]$	$-[A]-[B]+2[C]$	$-2[A]+2[C]$	$-[\mathrm{A}]+[\mathrm{C}]$
$V_{i=}$	$2[\mathrm{~A}]-\frac{2}{3}([\mathrm{~B}]+[\mathrm{C}]+[\mathrm{D}])$	$2[A]-\frac{2}{3}([B]+2[C])$	$\frac{4}{3}([A]-[C])$	$2[A]-2[C]$
$V_{x y}=V_{y x}$	$\frac{2}{7}([\mathrm{C}]-[\mathrm{D}])$	0	0	0
$V_{x z}=V_{z x}$	$\frac{2}{3}(-2[B]+[\mathrm{C}]+[\mathrm{D}])$	$\frac{2}{3}(-2[B]+2[C])$	$\frac{2}{3}(-2[A]+2[C])$	0
$V_{y z}=V_{z=}$	$\sqrt{\frac{2}{3}}([C]-[D]]$	0	0	0

${ }^{a}$ The axes system x, y, z as defined above does not in general coincide with the principal directions X, Y, Z of the EFG tensor. For example, in SnABC_{2} compounds, y coincides with Y, but x and z are rotated to coincide with X and Z when the $E F G$ tensor is diagonalized. ${ }^{b}$ See also refernce 8.

The $P Q S$ values for CH_{3} and $\mathrm{C}_{6} \mathrm{H}_{5}$ are much larger than those calculated previously ${ }^{8,12}$, and our predicted splittings for tetrahedral four coordinate compounds such as $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnCl}$ are $\sim 2.4 \mathrm{~mm} / \mathrm{sec}$, in agreement with observations cited recently ${ }^{13}$.

The $P Q S$ values for $\mathrm{Mn}(\mathrm{CO})_{5}$ and $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ given above indicate that $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ is an appreciably better σ donor and/or worse π acceptor than Mn $(\mathrm{CO})_{5}{ }^{9}$.

[^1]
ACKNOWLEDGEMENT

We are very grateful to Dr. R. V. Parish for sending us preprints of his recent work, to Dr. H. C. Clark for helpful advice and encouragement, and to the National Research Council of Canada for financial support.

REFERENCES

1 D. E. Fenton and J. J. Zuckerman, J. Amer. Chem. Soc., 90 (1968) 6226.
2 R. H. Herber and Y. Goscinny, Inorg. Chem., 7 (1968) 1293.
3 C. Wynter and L. Chandler, Bull. Chem. Soc. Japan, 43 (1970) 2115.
4 W. R. Cullen, J. R. Sams and J. A. J. Thompson, Inorg. Chem., 10 (1971) 843.
5 A. N. Karasev, N. E. Kolobova, L. S. Polak, V.S. Shpinel and K. N. Anisimov, Teor. Eksp. Khim., Akad. Nauk Ukr. SSR, 2 (1966) 126.
6 V. I. Goldanski, B. V. Borshagovski, E. F. Makarov, R. A. Stukan, K. A. Anisimov, N. E. Kolobova and V. V. Skzipkin, Teor. Eksp. Khim., Akad. Nauk Ukr. SSR, 3 (1967) 478.
7 D. E. Fenton and J. J. Zuckerman, Inorg. Chem., 8 (1969) 1771.
8 R. V. Parish and R. H. Platt, J, Chem. Soc. A, (1969) 2145.
9 G. M. Bancroft, M. J. Mays and B. E. Prater, J. Chem. Soc: A, (1970) 956.
10 M. G. Clark, Mol. Phys., 20 (1971) 257.
11 G. M. Bancroft, R. E. B. Garrod, A. G. Maddock, M. J. Mays and B. E. Prater, Chem. Commun. (1970), 200; ibid., J. Chem. Soc., to be published.

12 R. V. Parish and R. H. Platt, Inorg. Chim. Acta, 4 (1970) 65.
13 R. H. Platt, J. Orgunometal. Chem., 24 (1970) C23.
14 H. C. Clark and J. H. Tsal, Inorg. Chem., 5 (1966) 1407. M. R. Booth, D. J. Cardin, N. A. D. Carey, H. C. Clark and B. R. Sreenathan, J. Organometal. Chem., 21 (1970) 171. R. D. Gorsich, J. Amer. Chem. Soc., 84 (1962) 2486. D. S. Field and M. J. Newlands, J. Organometal. Chem., 27 (1971) 213.
15 R. F. Bryan, J. Chem. Sac. A, (1968) 696.
16 H. P. Weber and R. F. Bryan, Chem. Commun., (1966) 443.
17 R. F. Bryan, J. Chem. Soc. A, (1967) 192.
18 P. J. Greene and R. F. Bryan, J, Chem. Soc. A, (1970) 1696.
19 P. J. Greene and R. F. Bryan, J. Chem. Soc. A, (1970) 2261.
20 A. J. Stone, appendix to: G. M. Bancroft, W. K. Ong, A. G. Maddock, R. H. Prince and A. J. Stone, J. Chem. Soc. A, (1969) 1966.
21 R. V. Parish, personal communication, to be published.
J. Organometal. Chem., 34 (1972)

[^0]: * $\mathrm{EFG}=$ electric field gradient.
 ** There is some doubt now whether the sign of the chloride $P Q S$ is positive or negative (Parish, personal communication). A change in sign will not affect the following calculations.

[^1]: J. Organometal. Chem., 34 (1972)

